25 research outputs found

    Limb-Bone Scaling Indicates Diverse Stance and Gait in Quadrupedal Ornithischian Dinosaurs

    Get PDF
    Background The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. Methodology/Principal Findings Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. Conclusions/Significance Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor that may have affected the center of mass of the animal, and differences in locomotor behaviour such as migration, predator escape or home range size

    A new phylogeny of Stegosauria (Dinosauria, Ornithischia)

    Get PDF
    The stegosaurs are some of the most easily recognisable dinosaurs, but they are surprisingly rare as fossils. Consequently much remains unknown about their palaeobiology, and every new stegosaurian find contr ibutes to understanding the evolution of the clade. Since the last attempt to examine the evolutionary relationships of Stegosauria, new specimens have come to light, including the most complete individual of Stegosaurus ever found, new taxa have been desc ribed and, perhaps most importantly, new methods for analysis of cladistic datasets have been produced. In the light of these new data and technological advances, the phylogenetic relationships of the stegosaurs and basal armoured dinosaurs are investigate d. The inclusion of continuous data results in much better resolution than was previously obtained, and the resulting single most parsimonious tree supports re - erection of the genera Miragaia and Hesperosaurus , which had previously been synonymized with Dacentrurus and Stegosaurus respectively. The recently described genus Alcovasaurus is resolved as a basal thyreophoran, but this is likely to be due to a combination of a very high degree of missing data and the questionable ontogenetic stage of the speci men. Examination of the effects of continuous data on the analysis suggest that while it contains a phylogenetic signal congruent with that of discrete data and provides better resolution than discrete data alone, it can affect t opologies in unpredictable ways, particularly in areas of the tree where there are large amounts of missing data. The phylogeny presented here will form the basis for future work on the palaeobiology of the plated dinosaurs

    Late Triassic dinosaur tracks from Penarth, south Wales

    Get PDF
    Evidence of Late Triassic large tetrapods from the UK is rare. Here, we describe a track-bearing surface located on the shoreline near Penarth, south Wales, United Kingdom. The total exposed surface is c. 50 m long and c. 2 m wide, and is split into northern and southern sections by a small fault. We interpret these impressions as tracks, rather than abiogenic sedimentary structures, because of the possession of marked displacement rims and their relationship to each other with regularly spaced impressions forming putative trackways. The impressions are large (up to c. 50 cm in length), but poorly preserved, and retain little information about track-maker anatomy. We discuss alternative, plausible, abiotic mechanisms that might have been responsible for the formation of these features, but reject them in favour of these impressions being tetrapod tracks. We propose that the site is an additional occurrence of the ichnotaxon Eosauropus, representing a sauropodomorph trackmaker, thereby adding a useful new datum to their sparse Late Triassic record in the UK. We also used historical photogrammetry to digitally map the extent of site erosion during 2009–2020. More than 1 m of the surface exposure has been lost over this 11-year period, and the few tracks present in both models show significant smoothing, breakage and loss of detail. These tracks are an important datapoint for Late Triassic palaeontology in the UK, even if they cannot be confidently assigned to a specific trackmaker. The documented loss of the bedding surface highlights the transient and vulnerable nature of our fossil resources, particularly in coastal settings, and the need to gather data as quickly and effectively as possible

    New Middle to ?Late Jurassic dinosaur tracksites in the Central High Atlas Mountains, Morocco

    Get PDF
    Besides bones, fossil tracks and trackways are important sources of knowledge about dinosaur palaeobiology. Here, we report three new tracksites from two different synclines in the Imilchil area, Central High Atlas, Morocco. The tracks and trackways are preserved in fluvial deposits in different levels of the Isli Formation (Early Bathonian–?Upper Jurassic), and contain impressions made by sauropods, theropods and ornithopods, as well as tracks that might represent bird-like non-avian theropod dinosaurs. In addition to traditional field measurements, three-dimensional digital models of the track sites were created using photogrammetry. These new tracksites add to the rich faunal ichnoassemblage already recorded from the High Atlas Mountains and North Africa, which is considerably richer than the contemporaneous body fossil record, and also provide new data on dinosaurs–substrate interactions

    Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods.

    Get PDF
    BACKGROUND: The Las Cerradicas site (Tithonian-Berriasian), Teruel, Spain, preserves at least seventeen dinosaur trackways, some of them formerly attributed to quadrupedal ornithopods, sauropods and theropods. The exposure of new track evidence allows a more detailed interpretation of the controversial tridactyl trackways as well as the modes of locomotion and taxonomic affinities of the trackmakers. METHODOLOGY/PRINCIPAL FINDINGS: Detailed stratigraphic analysis reveals four different levels where footprints have been preserved in different modes. Within the tridactyl trackways, manus tracks are mainly present in a specific horizon relative to surface tracks. The presence of manus tracks is interpreted as evidence of an ornithopod trackmaker. Cross-sections produced from photogrammetric digital models show different depths of the pes and manus, suggesting covariance in loading between the forelimbs and the hindlimbs. CONCLUSIONS/SIGNIFICANCE: Several features (digital pads, length/width ratio, claw marks) of some ornithopod pes tracks from Las Cerradicas are reminiscent of theropod pedal morphology. This morphological convergence, combined with the shallow nature of the manus tracks, which reduces preservation potential, opens a new window into the interpretation of these tridactyl tracks. Thus, trackmaker assignations during the Jurassic-Cretaceous interval of purported theropod trackways may potentially represent ornithopods. Moreover, the Las Cerradicas trackways are further evidence for quadrupedalism among some basal small- to medium-sized ornithopods from this time interval

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link
    corecore